首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
大气科学   29篇
地球物理   7篇
海洋学   5篇
天文学   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
排序方式: 共有42条查询结果,搜索用时 46 毫秒
1.
The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Ni?o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24?h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2?h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Ni?o event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Ni?o which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon.  相似文献   
2.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   
3.
The temperature variability of the Atlantic Ocean is investigated using an eddy-permitting (1/4°) global ocean model (ORCA-025) forced with historical surface meteorological fields from 1958 to 2001. The simulation of volume-averaged temperature and the vertical structure of the zonally averaged temperature trends are compared with those from observations. In regions with a high number of observations, in particular above a depth of 500 m and between 22° N and 65° N, the model simulation and the dataset are in good agreement. The relative contribution of variability in ocean heat transport (OHT) convergence and net surface heat flux to changes in ocean heat content is investigated with a focus on three regions: the subpolar and subtropical gyres and the tropics. The surface heat flux plays a relatively minor role in year-to-year changes in the subpolar and subtropical regions, but in the tropical North Atlantic, its role is of similar significance to the ocean heat transport convergence. The strongest signal during the study period is a cooling of the subpolar gyre between 1970 and 1990, which subsequently reversed as the mid-latitude OHT convergence transitioned from an anomalously weak to an anomalously strong state. We also explore whether model OHT anomalies can be linked to surface flux anomalies through a Hovmöller analysis of the Atlantic sector. At low latitudes, increased ocean heat gain coincides with anomalously strong northward transport, whereas at mid-high latitudes, reduced ocean heat loss is associated with anomalously weak heat transport.  相似文献   
4.
The properties of the waters that move from the Pacific to the Indian Ocean via passages in the Indonesian archipelago are observed to vary with along-flow-path distance. We study an ocean model of the Indonesian Seas with reference to the observed water property distributions and diagnose the mechanisms and magnitude of the water mass transformations using a thermodynamical methodology. This model includes a key parameterization of mixing due to baroclinic tidal dissipation and simulates realistic water property distributions in all of the seas within the archipelago. A combination of air–sea forcing and mixing is found to significantly change the character of the Indonesian Throughflow (ITF). Around 6 Sv (approximately 1/3 the model net ITF transport) of the flow leaves the Indonesian Seas with reduced density. Mixing transforms both the intermediate depth waters (transforming 4.3 Sv to lighter density) and the surface waters (made denser despite the buoyancy input by air–sea exchange, net transformation?=?2 Sv). The intermediate transformation to lighter waters suggests that the Indonesian transformation contributes significantly to the upwelling of cold water in the global conveyor belt. The mixing induced by the wind is not driving the transformation. In contrast, the baroclinic tides have a major role in this transformation. In particular, they are the only source of energy acting on the thermocline and are responsible for creating the homostad thermocline water, a characteristic of the Indonesian outflow water. Furthermore, they cool the sea surface temperature by between 0.6 and 1.5°C, and thus allow the ocean to absorb more heat from the atmosphere. The additional heat imprints its characteristics into the thermocline. The Indonesian Seas cannot only be seen as a region of water mass transformation (in the sense of only transforming water masses in its interior) but also as a region of water mass formation (as it modifies the heat flux and induced more buoyancy flux). This analysis is complemented with a series of companion numerical experiments using different representations of the mixing and advection schemes. All the different schemes diagnose a lack of significant lateral mixing in the transformation.  相似文献   
5.
 We have developed a new method to accelerate tracer simulations to steady-state in a 3-D global ocean model, run off-line. Using this technique, our simulations for natural 14C ran 17 times faster when compared to those made with the standard non-accelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to re-initialize the parent model (at the original resolution). After re-initialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared 14C results from runs with and without this approach. Differences are less than 10‰ throughout 98.5% of the ocean volume. Predicted natural 14C appears reasonable over most of the ocean. In the Atlantic, modeled Δ14C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward; conversely, simulated Antarctic Bottom Water (AABW) does not penetrate northward beyond the equator as it should. In the Pacific, in surface eastern equatorial waters, the model produces a north–south assymetry similar to that observed; other global ocean models do not, because their resolution is inadequate to resolve equatorial dynamics properly, particularly the intense equatorial undercurrent. The model’s oldest water in the deep Pacific (at −239‰) is close to that observed (−248‰), but is too deep. Surface waters in the Southern Ocean are too rich in natural 14C due to inadequacies in the OGCM’s thermohaline forcing. Received: 18 March 1997 / Accepted: 27 July 1997  相似文献   
6.
The evaluation of ocean simulations against observed datasets is essential to assess their realism and to guide model development, but often remains qualitative, and ignores certain datasets. This paper presents a three-dimensional, quantitative comparison of a 1/6° Atlantic numerical simulation (CLIPPER) with the WOCE current meter dataset in terms of mean velocity and eddy kinetic energy. Our metrics reveal the good behaviour of CLIPPER open boundary conditions and forcing with respect to full-depth current records. Due to its still moderate resolution, however, the model globally underestimates the observed mean speeds and eddy activity. This discrepancy is barely noticeable at low latitudes but increases toward the poles, probably since the poleward decrease of the Rossby radius exceeds that of the horizontal grid step. At least in this eddy-admitting regime, it is suggested that the numerics of geopotential-coordinate models like ours dissipate mean and eddy momentum at depth and adversely affect current–topography interactions.  相似文献   
7.
 A primitive equation model is used to investigate the warm pool equilibrium of the tropical Pacific ocean. Attention is focused on the upper ocean. The oceanic response is described using an isothermal approach applied to warm waters contained in the TOGA-COARE domain. The heat balance shows that all the terms, atmospheric surface fluxes, advection and diffusion, operate in the heat bugdet with different time scales. Over long periods, diffusive heat fluxes transfer heat received from the atmosphere out of the warm pool trough the top of the main thermocline. Over short periods, the impact of westerly wind bursts modifies this balance: atmospheric heating is reversed, diffusion is enhanced and advective heat transports out of the warm pool operate through zonal and vertical contributions. We were able to relate the two latter processes to zonal jets and Ekman pumping, respectively. Conversely, the meridional contribution always represents a source of heat, mainly due to the tropical wind convergence. The modelling results clearly show that except during strong wind events, entrainment cooling is not an important component of the budget. The inability to remove heat is due to the salt stratification which needs to be first reduced or even destroyed by westerly wind bursts to activate heat entrainment into deeper layers. Finally, we suggest that the near zero estimate for the surface heat flux entering the warm pool may be extended to longer periods including seaosnal to interannual time scale. Received: 16 December 1996 / Accepted: 8 July 1997  相似文献   
8.
Diagnostic methods are defined in order to compare two numerical simulations of ocean dynamics in a region of freshwater influence. The first one is a river plume simulation based on a high resolution numerical configuration of the POM coastal ocean model in which mixing parametrizations have been previously defined. The second one is a simulation based on the NEMO Global Ocean Model used for climate simulations in its half-a-degree configuration in which a river inflow is represented as precipitation on two coastal grid cells. Both simulations are forced with the same freshwater inflows and wind stresses. The divergence of volumetric fluxes above and below the halocline are compared. Results show that when an upwelling wind blows, the two models display similar behavior although the impact of lack of precision can be observed in the NEMO configuration. When a downwelling wind blows, the NEMO Global Ocean configuration can not reproduce the coastally trapped baroclinic dynamics because its grid resolution is too coarse. To find a parametrization to help represent these dynamics in ocean general circulation models, a method based on energy conservation is investigated. This method shows that it is possible to link the energy fluxes provided by river inflows to the divergence of energy fluxes integrated over the grid cells of ocean general circulation models. A parametrization of the dynamics created by freshwater inflows is deduced from this method. This enabled creation of a box model that proved to have the same behavior as the fluxes previously computed from the high resolution configuration.  相似文献   
9.
Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden–Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20–100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean–atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.  相似文献   
10.
A global ocean mesh to overcome the North Pole singularity   总被引:1,自引:3,他引:1  
A semi-analytical method is presented for constructing a global orthogonal curvilinear ocean mesh which has no singularity point inside the computational domain since the mesh poles are moved to land points. The method involves defining an analytical set of mesh parallels in the stereographic polar plan, computing the associated set of mesh meridians, and projecting the resulting mesh onto the sphere. The set of mesh parallels proposed here is defined as a series of embedded circles. The resulting mesh presents no loss of continuity in either the mesh lines or the scale factors over the whole ocean domain, as the mesh is not a composite mesh. Thus, the Bering Strait can be opened without specific treatment. The equator is a mesh line, which provides a better numerical solution for equatorial dynamics. The resolution can be easily controlled through the definition of three analytical functions which can increase resolution and/or maintain a low ratio of anisotropy. The mesh has been implemented in the LODYC general circulation ocean model. Results of a semi-diagnostic simulation are shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号